Solutions Exam Compiler Construction—April 1st 2015

1. lexical analysis[20 points]
(a) [3 points] Consider the following NFA over the alphabet ¥ = {0,1}. Give a regular
expression for the language that is accepted by this NFA.
0

0 0@1

...@

Answer: Clearly, the NFA accepts the regular expression 00(0]1)*11.

(b) [7 points] Consider the language L consisting of all strings over the alphabet ¥ = {a, b}
that can be produced by the regular expression (a|b)*ab(b*|a*)ab. Draw a non-deterministic
finite state automaton (NFA) that accepts L.

Answer: Of course, several solutions are possible. It is probably easiest to use an automa-
ton that makes use of e-transitions.

b
a,b
tart —> a b ° @ €
a

(c) [10 points] Consider the following non-deterministic finite state automaton (NFA) over
the alphabet ¥ = {a, b} .

a,b a,b

?

Construct an equivalent deterministic finite state automaton (DFA) for this NFA.

Answer: To convert an NFA into a DFA, we need to perform a power set construction:

state | input | new state state input | new state
{1} a {1,2} {1,2,4} a {1,2,4}
{1} b {1} {1,2,4} b {1,3,4}
{1,2} a {1,2} {1,3,4} a {1,2,4}
{1,2} b {1,3} {1,3,4} b {1,4}
{1,3} a {1,2,4} {1,4} a {1,2,4}
a3y v | {1 (1,4 bo| {14}

In conclusion, we found the following DFA:

a
b a b
p)
a

2. Grammars[25 points]
(a)[5 points] Consider the following grammar, in which upper case letters denote the non-
terminals and lower case letters the terminals:

S — AS
S — ¢

A — Ab

A — aAbd
A — abd

Show that this grammar is ambiguous.

Answer: It is enough to show that there exists a string that can be derived with two
different parse trees. For example, the string aabbb can be obtained with two different
derivations:

S = AS=aAbS=aAbbS=aabbbS=aabbbd
S = AS=AbS=aAbbS=aabbbS=aabbbd

(b)[5 points] Consider the following grammar for arithmetic expressions (which contains
only one nonterminal F):

EFE — E+FE
EFE — E-F
E — ExFE
E - E/FE
E —- E"E)
E —- (F)

E — number

This grammar is clearly ambiguous. Convert this grammar into an unambiguous grammar
that accepts the same language. Moreover, the parse tree of an expression should be such
that it corresponds with the normal rules for arithmetic: the addition, subtraction, multi-
plication, and division operators are left-associative while the exponentiation operator (~) is
right-associative.

Answer: The grammar is converted into the standard grammar with terms and factors:

E — E+T EFE — F

E — E-T F - X

E — T F —» F~ X
T — Tx*xF F —» F°F
T - T/F X - (F)

EFE — F X — number

(c)[5 points] Consider the following grammar for strings containing parentheses.

S— S
S— (8)
S—= ()

Explain why this grammar is not LL(1), and convert it into an equivalent LL(1) grammar.

The grammar is clearly not LL(1), since the very first rule is left-recursive. It is not hard to
see that this grammar can be converted in the following equivalent LL(1) grammar:

S— (T
T— S)U
T— U
U— S
U— ¢

(d)[10 points] Consider the following variation of the grammar for strings containing paren-
theses.

S— (8)S
S— ()8
S— (S)
S— ()

Is the grammar LR(0), SLR(1), LR(1)? In case of conflicts be sure to identify them clearly
(you do not have to solve them).

Answer: We start with the construction of the LR(0)-item sets (and the corresponding
automaton or tables):

0
S Se 5
s_,:?s)s / S—=(S)-S
S a0)s ((So(S)e | g 7
A’ S—+(S)S >
S—e(S) L vl S ae0rS S—(S)Se
5-2-0 \ ’ " 3 7 S e(S)
S5(+S)S
S—5(S+)S S—e()
S>(+)S | S .
S5 (s8) =" S—>(Se)
S ()
S—e(S)S 4
(
S5e()S
S (S) ‘)\ $-0)-S
T I BRI ¢
S—e(S)S " 5505.
S5e()S
S—e(S)
S—e()

Note that this automaton does not use the augmented rule S — S $. If a student introduced
this rules, then this is of course perfectly fine.

From the figure, it is easy to see that there are two shift-reduce conflicts: one in state 4, and
one in state 5. Hence, the grammar is not LR(0). We can also draw this conclusion from
the LR(0) parse tables:

State () S
0 shift(2) 1
1 accept accept
2 shift(2) shift(4) 3
3 shift(5)
4 Shift(2) reduce(S - ()) 6

reduce(S = ())

shift(2)

reduce(S — (S)) reduce(S - (S)) 7

6 reduce(S - () S) reduce(S - () S)

7 reduce(S - (S) S) reduce(S—- (S) S)

To check whether the grammar is SLR(1), we need to construct the SLR(1) parse table:

State () $ S
0 shift(2) 1
1 accept
2 shift(2) shift(4) 3
3 shift(5)
4 shift(2) reduce(S - ()) reduce(S - ()) 6
5 shift(2) reduce(S — (S)) reduce(S = (S)) 7
6 reduce(S — () S) reduce(S — () S)
7 reduce(S — (S) S) reduce(S— (S) S)

Since there are no conflicts in this table, the grammar is SLR(1). Since the grammar is
SLR(1), it is surely LR(1) (result of the inclusion relation LR(0) C SLR(1) C LR(1)).

. Recursive descent parsing[20 points]

Given is the following LL(1) grammar for strings over the alphabet ¥ = {a,b,¢,d}. The
non-terminals are S (start symbol), A, B, C, and D. The terminals are the tokens a, b, c,
and d. Note, that € denotes the empty string:

S — cSAa
S — dDa

S — Aba

A — BaC

B — b

B — ¢

C — c

C — =

D — d

>

The terminal symbols of this grammar are represented by the enumeration type tokens:

typedef enum {
toka, tokb, tokc, tokd
} tokens;

A global variable currentToken and the function accept are used for interfacing with the
lexer (you don’t have to write the lexer, you may assume that yylex() exists, but you are
only allowed to call it via accept). You can initialize currentToken using the function
initParser.

tokens currentToken;

void initParser() {
currentToken = yylex();

}

int accept(tokens tok) {
if (currentToken == tok) {
currentToken = yylex();
return 1;

3

return O;

}

There is also a void function syntaxError available, that prints an error message and aborts:

void syntaxError(){
printf ("Syntax error: abort\n");
exit (EXIT_FAILURE) ;

}

Write a Recursive Descent Parser for the above grammar. The parser should print an error
message if it detects a syntax error (using syntaxError).

Answer: It helps to make a function expect(tokens tok) that expects the token tok. If
the current token mismatches, the routine prints a syntax error and aborts. The translation
from grammar into recursive procedure calls is one-to-one:

void expect(tokens tok) {
if (laccept(tok)) {
syntaxError() ;
}
}

void parseB() {
/¥ B => b *x/
accept (tokb) ;
/* B -> epsilon */
return;

}

void parseC() {
/* C —> c */
accept (tokc);

/* C -> epsilon */
return;

}

void parseD() {
/* D -> d *x/
expect (tokd) ;

}

void parseA() {
/* A ->BaC %/
parseBQ) ;
expect (toka) ;
parseCQ);

}

void parseS() {
/¥ S =>c S Aax/
if (accept(tokc)) {
parseSQ);
parseA();
expect (toka) ;
return;
}
/¥ S ->dDa x*x/
if (accept(tokd)) {
parseD(Q);
expect (toka) ;
return;
}
/¥ S ->Abax*x/
parseA();
expect (tokb) ;
expect (toka) ;
}

void parser() {
initParser();
parseSQ);

}

4. Syntax directed translation and optimization[15 points]
(a) [5 points] Consider the following C code fragment for computing the greatest common
divisor of x and y (both variables are of type int):

while (x '= y) {
if (x>=y) {
X=X -7y;
} else {
y=y-x%;
}
}

Translate this code by hand, simulating syntax directed translation (without any optimiza-
tions), into intermediate code. You may introduce as many auxiliary variables as needed.

The intermediate code may only consist of assignments of the form <operand1>=<operand2>
or <operandl>=<operand2> <operator> <operand3> (i.e. quadruples), labels, and condi-
tional jumps. Here the operands may be a variable or a constant. The conditional jumps
may only be of the form:

e if eq(<operand>) goto <labX> meaning if (<operand> == 0) goto <labX>.

e if 1t(<operand>) goto <labX> meaning if (<operand> < 0) goto <labX>.

Note that the <operand> in a conditional jump must be a variable.

Answer: The requested intermediate code would be generated by the routine genIRcode ()
which is discussed during the lectures (and is also in the lecture slides).

labil:
tl = x;
t2 = y;

t3 = t1l - t2;
if eq(t3) goto lab2;

t4 = x;

ts = y;

t6 = t4 - tb;

if 1t(t6) goto lab 3;

t7 = x;

t8 = y;

t9 = t7 - t8;

X = t9;

goto lab4;
lab3:

t10 = y;

tl1ll = x;

t12 =y - x;

y = t12;
lab4:

goto labl
lab2:

(b)[5 points] Consider the following intermediate codes in quadruple format (all variables
are of type int):

assignments | translation
a = b; a = b;
c=d+a; |c=d+ b;
d = e; d = e;
c=a+d; |c=Db+ e;
c = a; c = b;
a=a+d; |a=Db+ e;
b =4d; b =e;
a=c; a =c;
d=d+ 1; | d = et+l;
c=a+1l; |c=c+1;
a = c; a =c;

A compiler that uses copy propagation translates the code fragment on the left hand side into
the equivalent code fragment on the right hand side. Explain line by line which actions the

compiler performs during this translation and which information is stored during this process.

Answer: For copy propagation, a table with equivalences is needed. This table is updated
after each assignment, and can be used to replace operands by copies:

assignments | translation | equivalences

a = b; a = b; (a,b)
c=d+a;|c=4d+Db; | (ab)

d=e; d = e; (a,b), (d,e)
c=a+4d;|c=Db+e; | (ab) (de)

c = a; c = b; (a,b), (¢,b), (d,e)
a=a+d;|a=b+e;|(ch), (de)

b =d; b = e; (b,e), (d,e)
a=c; a = c; (a,c), (b,e), (d,e)
d=d+1; |d=e+l; (a,c), (b,e)
c=a+1;|c=c+1; | (be)

a=c; a = c; (a,c), (b,e)

(c) [5 points] An algorithm that performs redundant/dead code elimination transforms the
code on the left hand side of question (b) into:

PO T O AP
|
Q.

= C;

Explain how this optimization works (line by line). What would be the resulting code if we
apply this optimization to the code on the right hand side of question (b)?

Answer: A variable x is called alive if its value is being used as an operand later, but
before x is assigned some new value. A variable x is called dead if its value is not being used,
until x is assigned some new value. Assignments to dead variables can be removed.

If we apply this principle to the code on the left hand side of question (b), then we draw the
following conclusions:
e a=b; In the next assignment, a is used as an operand. So, this assignment ’survives’.

e ¢ = d + a; In the next line the variable c¢ is not used, while a line later is gets over-
written. Therefore, we eliminate this line.

e d = e; The variable 4 is used in the next line. So, it 'survives’.

e ¢ = a + d; In the next line the variable c gets overwritten. Therefore, we eliminate
this line.

e ¢ = a; The variable c is used 3 lines later, so it 'survives’.

e a = a + d; The variable a is not used in the next line, and a line later it gets over-
written. This line is eliminated.

e b = d; This is the last assignment to b in this basic block. So, it survives.
e a = c; The variable a is used two lines later. It survives.
e d

d + 1; This is the last assignment to d in this basic block. So, it survives.

e ¢ = a + 1; This is the last assignment to c in this basic block. So, it survives.

e a = c; This is the last assignment to a in this basic block. So, it survives.

If we apply this process to the code in the right hand side of part (b), then the following
lines 'survive’:

c = b;
b = e;
d=e + 1;
c=c+1;
a = c;

5. Memory organization: activation records [10 points]
Consider the following code fragment:

int x = 42, y = 10;

int g(int a, int b, int c) {
int d = a + b + c;
/* location 2: after d=a+b+c, before return) */
return d;

}

int f(int a) {
int b = 2%*a;
int ¢ = xty;
/* location 1: (after c=x+y, before return) */
return g(a, b, c);

}

int main() {
int a = f(x);
/* location 3: after return from f(); before printf() */
printf ("%d\n", a);
return O;

}

The program is executed. Make a sketch of the memory layout (heap + stack of activation
records) when execution of the program reaches the three marked locations. Assume that
there are no optimizations at all, so parameters are not passed via registers. Moreover,
assume that the code generator does not use registers to store variables, nor are function
results passed via registers. So, on function entry/exit there is no need to save registers.
You may also assume that at the beginning of the function main, the stack is empty (even
though this is not true in reality). Also, assume that the stack grows from low addresses to
high addresses (so the base pointer of main is address 0).

Answer: Global variables are stored on the heap, so the variables x and y are stored on
the heap (so, not on the stack).

As far as the stack layout is concerned, this is the procedure for calling a function new()
from a function old()*

(a) Push the arguments for new in reverse order.

1In the lecture slides, a more complicated procedure is presented due to saving of registers.

Reserve stack space for the return value of the function new.

Push the return address (i.e. code pointer/program counter back to old).
Push the frame pointer value of 01d (to save it).

Use the old stack pointer as frame pointer of new.

Reserve stack space for the local variables of new.

Execute the code of new.

Place the return value of new on the stack.

Restore the old frame pointer value.

Jump to the saved return address.

If we apply this procedure to the program, we find the following stack layouts:

e location 1: We start with an empty stack (beginning of main), and push the local

variable a. Next, the argument of the call f(x) is pushed: we push the value of x (i.e.
42). Next, we reserve space (4 bytes) for the return value of £(), and push the return
address in main (i.e. location 3). The next step is to push (save) the frame pointer of
main (which is 0). We reserve two locations for the local variables of £ (), and execute
the first two assignments of the function £ (). So, the stack layout at location 1 is given
in figure (a).

location 2: we start from the situation of location 1. We push the arguments for the
function g() in reverse over: push 52 (c), push 84 (b), push 42 (a). Next, we
reserve space (4 bytes) for the return value of g(), and push the return address in £ ().
The next step is to push (save) the frame pointer of £ (which is 16). We reserve one
location for the local variable d of g(), and execute the assignment in the function g().
So, the stack layout at location 2 is given in figure (b).

location 3: this location is actually easy. It simply is the situation after popping the
activation records of g() and f (). The stack layout is given in figure (c).

24

20

52 178 (local variable d of g)
48 16 (frame pointer of f)
44 returns address in f()
40 return value g()
36 42 (argument a of g)
32 84 (argument b of g)
28 52 (argument ¢ of g)
52 (local variable c of f) 24 52 (local variable ¢ of f)
84 (local variable b of f) 20 84 (local variable b of f)
0 (frame pointer of main) 16 0 (frame pointer of main)
returns address main 12 returns address main
return value f() 8 return value f()
42 4 42
a (local variable a of main) 0 a (local variable a of main) 0 178 (local variable a of main)

(a) (b) ()

10

